Lehingers Principles of Biochemistry Read Free Online
Figures - uploaded by David L Nelson
Author content
All figure content in this area was uploaded by David L Nelson
Content may exist subject to copyright.
Discover the world's research
- xx+ 1000000 members
- 135+ 1000000 publications
- 700k+ research projects
LEHNINGER
PRINCIPLES OF BIOCHEMISTRY
5th Edition
David L. Nelson and Michael M. Cox
©
2008 West. H. Freeman and Company
CHAPTER 19
Oxidative Phosphorylation
Cellul
Cellul æ
ær
r
respirasjon
respirasjon :
: siste
siste
trinn
trinn
Elektronoverføring
og
oksidativ
fosforylering
Oksidativ
fosforylering
Oksidativ
Oksidativ
fosforylering
fosforylering
syntese
av
ATP fra
ADP og
Pi
oksidasjon
av
NADH og
FADH2 generert
fra
oksidering
av
brenselsmolekyler
Mitokondrier
Mitokondrier
•To
membraner
•Ytre
membran:
•permeabel
for små
molekyler
•Indre
membran:
•
ikke
permeabel
for de fleste
molekyler
og
ioner
•
rommer
elektron-send kjedens
komponenter
og
ATP synthase
•Matrix
inneholder:
-PDH kompleks
-CAC enzymer
-β-oksidasjon
enzymer
+++
B
Bæ
ærere av elektroner
rere av elektroner
•
NADH, NADPH, FADH2
og FMNH2
–
Dehydrogenaser i katabolske pathways overfører e -
til NAD+
og
NADP+
–
Flavoproteiner har FAD el. FMN som prostetisk gruppe,
aksepterer også
eastward-
fra katabolske pathways
•
Ubiquinone (Q)
–
Calorie-free, fettløselig molekyl i indre mitokondrielle membran
•
Cytochromer
–
Proteiner med prostetisk heme gruppe
•
Jern-svovel proteiner
–
Proteiner med jern-svovel sentre
Prostetiske
Prostetiske
grupper
grupper
p
på
å
cytochromer
cytochromer
Jern
Jern -
-svovel sentre p
svovel sentre p å
å
jern
jern -
-svovel proteiner
svovel proteiner
Fe-S senter 2Fe-2S senter 4Fe-4S senter
Elektrontransportkjeden
Elektrontransportkjeden
Elektrontransportkjedens
proteiner
pumper protoner
ut
av
den mitokondrielle
matrix mens
elektroner
strømmer
fra
FADH2
og
NADH til
O2
Kompleks
Kompleks
I (NADH
I (NADH dehydrogenase
dehydrogenase )
)
Katalyserer ii koblede prosesser:
1)
Overføring av hydrid ion (1H+
+ 2e - ) fra NADH og 1H+
fra
matrix til Q
2)
Overføring av 4H+
fra matrix
til intermembran rommet
→Protonpumpen drives av
elektronoverføring
Reaksjonen er vektoriell: flytter
protoner i en spesifikk retning
Netto likning:
NADH + 5HNorth+
+ Q → NAD+
+ QHii
+ 4HP+
Kompleks I overf
Kompleks I overf ø
ører
rer eastward
e-
-
til Q
til Q
Q (ubiquinone)
Q (ubiquinone)
•Også
kalt coenzym Q
•
Benzoquinone med
isoprenoid sidekjede
•
Kan akseptere e -
for å
danne
semiquinone radikal eller 2e-
for å
danne ubiquinol
Overf
Overf ø
øring
band
av
av
elektroner
elektroner
til
til
ubiquinone
ubiquinone
(Q)
(Q)
Q kan motta e -
fra:
i)
NADH (Kompleks I)
ii)
Succinat (Kompleks Two, CAC)
three)
Fatty acyl-CoA (Acyl-CoA
dehydrogenase (β -
oksidasjon)
overfører e -
via
ETF og ETF:Q
oksidoreduktase)
4)
Glycerol 3-fosfat (direkte fra
glycerol three-fosfat
dehydrogenase)
Q overf
Q overf ø
ører
rer e
e-
-
til Kompleks 3
til Kompleks Three
Cytochrome
Cytochrome
bc
bcane
1
kompleks
kompleks
(Kompleks
(Kompleks
III)
Three)
Katalyserer koblede prosesser:
1)
Overføring av e -
fra QH2
til
Cyt c
ii)
Overføring av H+
fra matrix
til intermembran rommet
Dimer: 2 monomerer
Q
Q
syklusen
syklusen
Netto likning:
QH2
+ two cyt c
(oksidert) + 2HN+
→Q + 2 cyt c
(redusert) + 4HP+
Cyt C overf
Cyt C overf ø
ører
rer e
e-
-
til Kompleks Four
til Kompleks IV
Cytochrome
Cytochrome
c
c (Cyt
(Cyt c
c)
)
•Løselig protein i intermembran rommet
•En prostetisk gruppe: heme
•Aksepterer et east-
av gangen fra Kompleks III
•Overfører e-
til Kompleks IV
•
Beveger seg mellom Kompleks 3 og
Kompleks IV for å
akseptere og avlevere
elektroner
Cytochrome
Cytochrome
oksidase
oksidase
(Kompleks
(Kompleks
Iv)
Iv)
•Aksepterer e -
fra Cyt c
•Katalyserer reduksjon av O2
:
•4e -
overført fra Cyt c
•4H+
fra matrix
→danner 2Htwo
O
•
Reduksjonen av O2
er koblet med
overføring av 4H+
fra matrix til
intermembran rommet
Netto likning:
four cyt c
(redusert) + 8HN+
+ O2
→4 cyt c
(oksidert) + 4HP+
+ 2Hii
O
Str
Str ø
øm
thousand
av
av
elektroner
elektroner
og
og
protoner
protoner
Netto
vektoriell
likning:
NADH + 11HDue north+
+ ½
Otwo
→NAD+
+ 10HP+
+ Htwo
0
Netto reaksjon: ½
O2
+ 2H+
+ 2e -
→
Htwo
O
Elektrontransportkjeden:
Elektrontransportkjeden:
oppsummering
oppsummering
ETC består
av
4 komplekser
(I-4) og
to
mobile elementer
(Q og
cyt
c) som befinner seg i den
indre
mitokondrielle
membranen/intermembran rommet.
Elektroner og
protoner
overføres
fra
Kompleks
I og
II til
Q. Kompleks
I pumper
four H+
over membranen
for hver
2e -
overført
til
Q.
2e-
overføres
fra
QH2
til
Kompleks
Iii gjennom
Q syklusen.
Kompleks
Iii overfører sekvensielt
4east-
til
Cyt
c
og
pumper
2H+
over
membranen
for hvert
e-
overført til
cyt
c.
Cyt
c
forflytter seg
til
Kompleks
Four og
overfører
et
elektron
til
Kompleks
IV
(x4)
Kompleks
4 katalyserer
en
ive -
reduksjon
av
O2
, konsumerer
4H+
og
danner
dermed 2H2
O, mens
4H+
simultant pumpes over
membranen.
Netto reaksjon: ½
O2
+ 2H+
+ 2e-
→
Htwo
O
The
The proton
proton -
-motive
motive
force
force
•
Den indre
membranen
separerer
matrix
(North side) fra intermembran
rommet
(P
side)
•
Pumping av
H+
av
ETC kompleksene
skaper
en forskjell i
[H+ ] på
N
og
P side
•
Forskjellen
i
kjemisk
konsentrasjon
(∆ pH) og
fordelingen av ladninger
(∆ψ )
skaper
en proton-drivkraft (proton-motive
force)
(∆ Thou)
Den
Den
kjemiosmotiske
kjemiosmotiske
modellen
modellen
ATP
ATP synthase
synthase
•2 funksjonelle
domener:
Fo
og
Fi
•Fo
: integrert
i
membranen
•F1
: festet
til
Fo
•Syntetiserer
ATP fra
ADP og
Pi
Fone
Fo
ATP synthase
ATP
ATP synthase
synthase
•Fo
har
en
proton pore
•
Strøm
av
protoner
gjennom
poren
får
F1
til å
rotere
•
Fone
har
iii α
subenheter
og
3 β
subenheter
som er organisert
rundt
"skaftet"
γ
•
β
subenhetene
har
bindingsseter
for
ATP/ADP
•
ATP/ADP-binding
og
ATP syntese er
kontrollert
av
konformasjonsendringer
indusert
av
rotasjonen
om
γ
Proton
Proton-
-drivkraften driver frigj
drivkraften driver frigj ø
øringen av ATP fra enzymet
ringen av ATP fra enzymet
Frigjøringen av ATP fra enzymet er energibarrieren, ikke ATP
syntesen
Rotasjonskatalyse
Rotasjonskatalyse
•
3 forskjellige konformasjoner
for β
subenhetene:
-
β-ATP (tett bounden)
-
β-ADP (løs binding)
-
β-empty (svært løs binding)
•
Hver β
subenhet endres
mellom alle 3 konformasjoner i
løpet av hver rotasjon
•En komplett rotasjon:
-
9 H+
overført fra intermembran
rommet til matrix
-3 ATP produsert
ATP
ATP synthase
synthase :
: oppsummering
oppsummering
•Proton-motive force driver ATP syntesen gjennom ATP synthase
•
ATP synthase utfører "rotasjonssyntese": protoner strømmer
gjennom Fo
og får dermed Fi
til å
rotere. Dette gir
konformasjonsendringer i ATP/ADP-bindingssetene
•
Dannelse av ATP på
enzymet krever light energi, proton-
drivkraften frigjør ATP fra bindingssetene
•
For hver ATP produsert, strømmer 3H+
fra intermembran rommet
til matrix
Oversikt
Oversikt
over
over
oksidativ
oksidativ
fosforylering
fosforylering
Transportprosesser
Transportprosesser
over
over
den
den
mitokondrielle
mitokondrielle
indre
indre
membranen
membranen
1)
ATP/ADP send
2)
Ship
av
NADH
2a) Malat-aspartat skyttel (lever, nyrer, hjerte)
2b) Glycerol 3-fosfat skyttel (skjelettmuskler, hjerne)
ATP/ADP transport
ATP/ADP transport
Malat
Malat -
-aspartat skyttel
aspartat skyttel
Glycerol 3
Glycerol 3 -
-fosfat skyttel
fosfat skyttel
Regulering av de ATP
Regulering av de ATP -
-produserende pathways
produserende pathways
Sammenkoblet regulering av:
-
Glykolysen
-
Sitronsyresyklusen
-
Oksidativ fosforylering
Kontroll ved:
-
[ATP]
-
[ADP]
-
[AMP]
-
[NADH]
Kap
Kap
19:
19: Oksidativ
Oksidativ
fosforylering
fosforylering -
-
hva er viktig?
hva er viktig?
•
Elektrontransportkjeden:
de
forskjellige
komponentene
og
deres
rolle,
strømmen
av
elektroner
og
protoner,
netto
reaksjon
•Proton-drivkraften (proton-motive forcefulness)
•Den kjemiosmotiske modellen
•
Syntese
av
ATP ved
ATP synthase: struktur
og
hvordan
enzymet
opererer
•
Transportprosesser
over den
mitokondrielle
indre
membranen:
ATP/ADP
transport, malat-aspartat
skyttel
og
glycerol
3-fosfat
skyttel
... Although uniform with full general 3D object data, these models mainly focus on the overall poly peptide topology but overlook the subtleties in the fine-grained geometries, which could be essential in many scenarios. For case, given an amino acrid characterized by its backbone atoms (carbon, nitrogen, and oxygen) and a side-concatenation, as shown in Figure ane, the locations of the backbone atoms determine the poly peptide skeleton locally and its local frame orientation affects how it interacts with other amino acids, either of which tin can take important impacts on the unabridged protein structure (Nelson et al., 2008). It is also well-known that a small change to the side chain angles could cause a significant change to the protein functionality, especially when it interacts with other biological molecules (Jacobson et al., 2002;Misiura et al., 2021). ...
... A more concrete application in the experiment section demonstrates how VNN-based models are limited in perceiving angles (e.grand. side-chain torsion angles), which have been proven crucial for proteins to collaborate with other partners through not-covalent bonds (Nelson et al., 2008). ...
- Jiahan Li
- Shitong Luo
- Congyue Deng
- Jianzhu Ma
A protein performs biological functions by folding to a particular 3D construction. To accurately model the protein structures, both the overall geometric topology and local fine-grained relations between amino acids (e.g. side-chain torsion angles and inter-amino-acrid orientations) should be carefully considered. In this piece of work, we advise the Directed Weight Neural Network for better capturing geometric relations amid different amino acids. Extending a single weight from a scalar to a 3D directed vector, our new framework supports a rich ready of geometric operations on both classical and SO(iii)--representation features, on top of which we construct a perceptron unit for processing amino-acid information. In addition, we introduce an equivariant message passing image on proteins for plugging the directed weight perceptrons into existing Graph Neural Networks, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments evidence that our network has remarkably ameliorate expressiveness in representing geometric relations in comparison to classical neural networks and the (globally) equivariant networks. It besides achieves state-of-the-fine art performance on various computational biology applications related to protein 3D structures.
... lining the bronchioles; their overproduction is a major cause of inflammation in asthma and allergic rhinitis (Nelson et al., 2008). Leukotriene antagonists are used to treat these disorders past inhibiting the production or activity of leukotrienes (Scott and Peters-Golden, 2018). ...
- Ndiokwere Akaolisa Obumnaeme
- Johnkennedy Nnodim
Inflammation is the complex pathophysiologic response of tissue injury or infection. Biochemical mediators released during inflammation intensify and propagate the inflammatory response leading to organ dysfunction and major problem in many clinical conditions such as sepsis, severe burns, acute pan-creatitis, hemorrhagic daze, and trauma. Inflammatory mediators are soluble, diffusible molecules that act systemically and locally at the site of injury or infection. Inflammation causes stimulation of body's defense system; activation of leukocytes causes release of inflammatory mediators at a site of infection or inflammation which control the later accumulation and activation of other cells. These mediators are produced past the body cells; histamine, prostanoids, cytokines secreted primarily from neutrophils, monocytes, macrophages, platelets, mast cells, endothelial cells lining the blood vessels, damaged tissue cells or from blood plasma derived; Contact system/Coagulation cascade (Hageman factor (clotting factor XII)), Kinin generation, Complement system. Medical laboratory qualitative and quantitative analysis of these inflammatory mediators in conjunction with other inflammatory markers play a very vital part in the medical laboratory diagnosis of both chronic and acute inflammation and inflammatory dis
... Among lipids, triglycerides are by far the most abundant class of lipids in the human body, making up the bulk of the then-called "body fat" [4]. They are as well the master lipids in food, including vegetable oils [v]. Membrane lipids, mainly phospholipids and cholesterol, institute a small fraction of the human being body lipids. ...
This work intends to describe the physical properties of red blood jail cell (RBC) membranes in obese adults. The hypothesis driving this research is that obesity, in addition to increasing the amount of body fat, volition also modify the lipid limerick of membranes in cells other than adipocytes. Forty-nine control volunteers (16 male person, 33 female person, BMI 21.8 ± 5.6 and 21.v ±4.2 kg/m2, respectively) and 52 obese subjects (16 male and 36 female, BMI 38.2±11.0 and 40.vii±8.7 kg/m2, respectively) were examined. The two physical techniques applied were atomic forcefulness microscopy (AFM) in the strength spectroscopy mode, which allows the micromechanical measurement of penetration forces, and fluorescence anisotropy of trimethylammonium diphenylhexatriene (TMA-DPH), which provides data on lipid guild at the membrane polar–nonpolar interface. These techniques, in combination with lipidomic studies, revealed a decreased rigidity in the interfacial region of the RBC membranes of obese as compared to control patients, related to parallel changes in lipid composition. Lipidomic data show an increase in the cholesterol/phospholipid mole ratio and a decrease in sphingomyelin contents in obese membranes. ω-three fatty acids (e.g., docosahexaenoic acid) appear to be less prevalent in obese patient RBCs, and this is the instance for both the global fatty acid distribution and for the individual major lipids in the membrane phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS). Moreover, some ω-vi fatty acids (e.m., arachidonic acrid) are increased in obese patient RBCs. The switch from ω-3 to ω-6 lipids in obese subjects could be a major factor explaining the higher interfacial fluidity in obese patient RBC membranes.
... The above phenomena shown in Fig 4 can exist explained from the theoretical analysis, for which we consider the Gibbs complimentary energy variation at the starting moment ΔG. For this cotransport process of the E. coli LacY protein, we can rewrite the free energy variation in terms of the sum of the chemic potential multiplying the stoichiometry of the two particles [21], bringing the data and slightly transforming and then nosotros have, ...
- Haoran Sun
The symport of lactose and H ⁺ is an of import physiological process in E . coli , for information technology is closely related to cellular energy supply. In this paper, nosotros review, extend and analyse a newly proposed cotransport model that takes the "leakage" phenomenon (uncoupled particle translocation) into account and as well satisfies the static head equilibrium condition. Then, we use the model to report the equilibrium properties, including equilibrium solution and the fourth dimension required to reach equilibrium, of the symport process of E . coli LacY poly peptide, when varying the parameters of the initial country of cotransport system. It tin can be found that in our extended model, H ⁺ and lactose volition reach their equilibrium country separately, and when "leakage" exists, information technology linearly affects the equilibrium solution, which is a useful property that the original model does not have. We subsequently investigated the effect of the volume of periplasm and cytoplasm on the equilibrium properties. For a sure East . coli jail cell, as it continues to lose water and contract, the time for cytoplasm pH to be stabilized by symport increases monotonically when the prison cell survives. Finally, nosotros reproduce the experimental data from a literature to verify the validity of the extension in this symport procedure. The above phenomena and other findings in this paper may help us to not only further validate or improve the model, just likewise deepen our agreement of the cotransport process of East . coli LacY protein.
- Pedro Martinez-Gomez
En esta tesis doctoral se atiende a la naturaleza y alcance de los avances recientes en la Posgenómica, empleando como herramienta el realismo experimental defendido por Ian Hacking. Con este fin, desarrollamos una triple tarea. En primer lugar, ofrecemos un análisis de la Genética y del concepto de gen desde sus orígenes a comienzos del siglo XX hasta la presente etapa Posgenómica desde una perspectiva experimentalista. En segundo lugar, resumimos las implicaciones epistemológicas derivadas de este análisis experimentalista de la Posgenómica en relación con nuestro conocimiento acerca de la realidad de la Genética y las aproximaciones para conocer esta realidad. Finalmente, exploramos las implicaciones ontológicas derivadas de este análisis en relación con la esencia de la realidad genética y la herencia de caracteres y la esencia del concepto de gen como responsable de esta herencia.
- Juliet Veskova
- Federica Sbordone
- Hendrik Frisch
The development of sustainable plastic materials volition exist flanked with conscious resource management, waste recovery frameworks, and social change. Nonetheless, developing strategies toward controlled polymer degradation remains a primal challenge—whether as a failsafe mechanism for materials that escape the resources recovery cycle, or where distinct degradation pathways are required for specific applications such equally in the biomedical realm. This perspective highlights recent trends, challenges, and future strategies on three levels: 1) On the materials level, by the incorporation of enzymes into polymer materials that catalyze polymer deposition under benign conditions; 2) On the domain level, crystalline segments of polymer materials are ofttimes inert, fifty-fifty to enzymatically catalyzed deposition. Gaining an understanding of the mode of interaction betwixt enzymes and polymer chains is key to controlling degradation of all polymer morphologies within materials. Processive depolymerization mechanisms, where the enzyme binds polymer chain ends and depolymerizes along the concatenation are extremely promising for efficient polymer degradation; iii) On the molecular level, where polyesters exhibit enzymatic targets of ester bonds through their polymer backbone, poly(alkene)due south c of all carbon backbones. To enable degradation of this most abundant course of polymers, strategies must exist developed to incorporate enzymatic targets into the courage. Polymer degradation is a key challenge that can merely be solved by a joint effort of governance, personal behavior, and physical sciences. This perspective highlights recent strategies in the field of polymer chemistry that tackle controlled polymer degradation from the level of chemic bonds all the mode into plastic materials.
- Etinosa C. Osemwota
- Adeola M. Alashi
- Rotimi Aluko
Defatted lentil seed flour proteins were separated into their constituent albumin (ALB), globulin (GLB) and glutelin (GLT) fractions followed by determination of their structural and functional properties. The GLB fraction demonstrated superior solubility (84%–100%) at acidic and alkaline pH values when compared to the lower values for ALB and GLT. Amino acid composition assay showed lower contents of hydrophobic and sulphur‐containing residues for GLB. Even so, GLB had the highest in vitro protein digestibility, which may exist due to lower contents of rigid secondary construction fractions like the β‐sheet and β‐turns. In contrast, water and oil property capacities likewise as gelling ability were amend for GLT and ALB than GLB. The GLT fraction formed very poor emulsions at pH iii and 5 but emulsification was significantly (p < 0.05) improved (smaller oil droplets) at pH 7 and 9. Foaming capacity was strongest for GLB, especially at pH 5, vii and 9 where increase in protein concentration had a negative effect on foam formation. Overall, the protein type and pH of the surround had stronger effects on emulsion and foaming properties than the protein concentration. Dark-green lentil seed proteins were sequentially separated into albumin, globulin, and glutelin fractions based on their solubility in h2o, NaCl solution and NaOH solution, respectively. Glutelin and globulin constituted the major protein fractions while albumin was present as a small-scale fraction. Structural and functional properties of the protein fractions were highly influenced by pH of the surround.
- A. A. Shcherbatykh
- M. S. Chernov'yants
- L. D. Popov
A promising area in the analytical chemical science of thiol-containing compounds is the apply of heterocyclic disulfides as analytical agents, but at present simply a few of them are widely used. In this paper, we evaluate the possibility of using three different heterocyclic disulfides 2,ii′-dithiobis[v-phenyl-1,3,4-oxadiazole] (I), 2,two′-dithiobis[benzoxazole] (2) and 8,8′-dithiobis-quinoline (III) every bit analytical reagents for the depression-mass aminothiols cysteine and glutathione conclusion. The optimal analysis conditions were found. Spectrophotometric, kinetic, CE, and HPLC methods using I, II, III for the determination of cysteine and glutathione were developed. The obtained methods are characterized by accurateness and sensitivity (detection limits in the range of x–5–ten–6 1000) sufficient to quantify cysteine and glutathione in their physiological concentrations. Finally, the proposed disulfides were used to determine the SH-content in the bovine serum albumin (BSA). Considering a number of criteria (applicative pH range, absorption backdrop, susceptibility to hydrolysis) it was ended that the proposed reagents have advantages over the commonly used ones (such every bit the Ellman reagent).
This work reviews the use of carbohydrates and their derivatives as renewable raw materials in the production of surfactants. Methods to attain state‐of‐the‐fine art carbohydrate‐derived surfactants are described. This includes surfactants widely used present and others that have not however transcended across the academic field. Given the abundance of hydroxyl groups in carbohydrates and the considerable quantity of different surfactant structures that tin can be generated during their synthesis, selectively obtaining a target product represents a claiming. Therefore, this work focuses on the platform chemicals available to synthesize biobased surfactants. The starting time part of the review comprises a cursory introduction of simple and circuitous carbohydrates to ameliorate understand their chemical science. Then, a description of the processes to obtain biobased building blocks derived from carbohydrates according to the National Renewable Energy Laboratory (NREL, USA), and their usefulness in synthesizing surfactants is presented. This provides an organized inventory of the cognition around the synthesis–production of surfactants from carbohydrate derivatives, emphasizing raw materials that could be inserted into the round bioeconomy concept. Finally, the current industry trends and the potential role of biobased surfactants around new dioxane regulations are discussed. Open up access link: https://aocs.onlinelibrary.wiley.com/share/KFHIXIR2YNANWCNARMNQ?target=10.1002/jsde.12581
- Andreas Mayer
Membrane fusion is a fundamental biochemical reaction and the last step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between dissimilar compartments and for exo- and endocytic traffic of signaling molecules and receptors. Information technology leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which disuse into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organisation of eukaryotic cells; for their advice with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such every bit Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, in that location is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such equally the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
rodgerswithaturaine52.blogspot.com
Source: https://www.researchgate.net/publication/48376766_Lehninger_Principles_of_Biochemistry
0 Response to "Lehingers Principles of Biochemistry Read Free Online"
Postar um comentário